Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses through Increase in Use-Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard
نویسندگان
چکیده
The response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity to different concentrations of hydrogen peroxide (H2O2) or nickel (Ni) was evaluated. Further, the effect of H2O2 on photosynthetic responses of the mustard cultivars grown with or without Ni stress was studied. Application of 50 μM H2O2 increased photosynthesis and growth more prominently in high photosynthetic capacity cultivar (Varuna) than low photosynthetic capacity cultivar (RH30) grown without Ni stress. The H2O2 application also resulted in alleviation of photosynthetic inhibition induced by 200 mg Ni kg(-1) soil through increased photosynthetic nitrogen-use efficiency (NUE), sulfur-use efficiency (SUE), and glutathione (GSH) reduced production together with decreased lipid peroxidation and electrolyte leakage in both the cultivars. However, the effect of H2O2 was more pronounced in Varuna than RH30. The greater increase in photosynthetic-NUE and SUE and GSH production with H2O2 in Varuna resulted from higher increase in activity of nitrogen (N) and sulfur (S) assimilation enzymes, nitrate reductase and ATP-sulfurylase, respectively resulting in enhanced N and S assimilation. The increased N and S content contributed to the higher activity of ribulose-1,5-bisphosphate carboxylase under Ni stress. Application of H2O2 also regulated PS II activity and stomatal movement under Ni stress for maintaining higher photosynthetic potential in Varuna. Thus, H2O2 may be considered as a potential signaling molecule for augmenting photosynthetic potential of mustard plants under optimal and Ni stress conditions. It alleviates Ni stress through the regulation of stomatal and non-stomotal limitations, and photosynthetic-NUE and -SUE and GSH production.
منابع مشابه
Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard
The potential of exogenous ethylene and sulfur (S) in reversal of cadmium (Cd)-inhibited photosynthetic and growth responses in mustard (Brassica juncea L. cv. Pusa Jai Kisan) were studied. Plants grown with 50 μM Cd showed increased superoxide and H2O2 accumulation and lipid peroxidation together with increased activity of 1-aminocyclopropane carboxylic acid synthase (ACS) and ethylene product...
متن کاملCritical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کاملCritical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کاملMethyl Jasmonate Alleviates Cadmium-Induced Photosynthetic Damages through Increased S-Assimilation and Glutathione Production in Mustard
The effect of methyl jasmonate (MeJA) in mitigation of 50 μM cadmium (Cd) toxicity on structure and function of photosynthetic apparatus in presence or absence of 1.0 mM [Formula: see text] was investigated in mustard (Brassica juncea L. cv. Ro Agro 4001) at 30 days after sowing. Plants exhibited increased oxidative stress, impaired photosynthetic function when grown with Cd, but MeJA in presen...
متن کاملNitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard
The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg(-1) soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in plant science
دوره 7 شماره
صفحات -
تاریخ انتشار 2016